Detecting Anomalous Network Traffic with Self-organizing Maps

نویسندگان

  • Manikantan Ramadas
  • Shawn Ostermann
  • Brett C. Tjaden
چکیده

Integrated Network-Based Ohio University Network Detective Service (INBOUNDS) is a network based intrusion detection system being developed at Ohio University. The Anomalous Network-Traffic Detection with Self Organizing Maps (ANDSOM) module for INBOUNDS detects anomalous network traffic based on the Self-Organizing Map algorithm. Each network connection is characterized by six parameters and specified as a six-dimensional vector. The ANDSOM module creates a Self-Organizing Map (SOM) having a two-dimensional lattice of neurons for each network service. During the training phase, normal network traffic is fed to the ANDSOM module, and the neurons in the SOM are trained to capture its characteristic patterns. During real-time operation, a network connection is fed to its respective SOM, and a “winner” is selected by finding the neuron that is closest in distance to it. The network connection is then classified as an intrusion if this distance is more than a pre-set threshold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analyzing TCP Traffic Patterns Using Self Organizing Maps

The continuous evolution of the attacks against computer networks has given renewed strength to research on anomaly based Intrusion Detection Systems, capable of automatically detecting anomalous deviations in the behavior of a computer system. While data mining and learning techniques have been successfully applied in host-based intrusion detection, network-based applications are more difficul...

متن کامل

Visualization of the Packet Flows using Self Organizing Maps

Recently, the spread of the Internet makes familiar to the incident concerning the Internet, such as a DoS attack and a DDoS attack. Some methods which detect the abnormal traffics in the network using the information from headers and payloads of IP-packets transmitted in the networks are proposed. In this research, the method for the analysis of the flow of IP packet based on SOM (Self-Organiz...

متن کامل

Improving Network Intrusion Detection with Growing Hierarchical Self-Organizing Maps

Nowadays, the growth of the computer networks and the expansion of the Internet have made the security to be a critical issue. In fact, many proposals for Intrusion Detection/Prevention Systems (IDS/IPS) have been proposed. These proposals try to avoid that corrupt or anomalous traffic reaches the user application or the operating system. Nevertheless, most of the IDS/IPS proposals only disting...

متن کامل

Intrusion Detection at Packet Level by Unsupervised Architectures

Intrusion Detection Systems (IDS’s) monitor the traffic in computer networks for detecting suspect activities. Connectionist techniques can support the development of IDS’s by modeling ‘normal’ traffic. This paper presents the application of some unsupervised neural methods to a packet dataset for the first time. This work considers three unsupervised neural methods, namely, Vector Quantization...

متن کامل

Visualization of Network Security Traffic using Hexagonal Self-Organizing Maps

A hexagonal Self-Organising Map (SOM) based on the Vulture Fest Model of intrusion detection illustrates the network landscape of wireless traffic comparing it with malicious traffic and contrasting it to traditional landline network traffic. This map can also provide visual security profiles of work groups and LAN administrators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003